Skip to main content

设计循环队列

题目

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Your implementation should support following operations:

  • MyCircularQueue(k): Constructor, set the size of the queue to be k.
  • Front: Get the front item from the queue. If the queue is empty, return -1.
  • Rear: Get the last item from the queue. If the queue is empty, return -1.
  • enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.
  • deQueue(): Delete an element from the circular queue. Return true if the operation is successful.
  • isEmpty(): Checks whether the circular queue is empty or not.
  • isFull(): Checks whether the circular queue is full or not.

Example

MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3
circularQueue.enQueue(1); // return true
circularQueue.enQueue(2); // return true
circularQueue.enQueue(3); // return true
circularQueue.enQueue(4); // return false, the queue is full
circularQueue.Rear(); // return 3
circularQueue.isFull(); // return true
circularQueue.deQueue(); // return true
circularQueue.enQueue(4); // return true
circularQueue.Rear(); // return 4

Note

  • All values will be in the range of [0, 1000].
  • The number of operations will be in the range of [1, 1000].
  • Please do not use the built-in Queue library.

代码实现

/**
* Initialize your data structure here. Set the size of the queue to be k.
* @param {number} k
*/
var MyCircularQueue = function (k) {
this.q = new Array(k);
this.head = -1;
this.tail = -1;
this.cap = k;
};

/**
* Insert an element into the circular queue. Return true if the operation is successful.
* @param {number} value
* @return {boolean}
*/
MyCircularQueue.prototype.enQueue = function (value) {
if (this.isFull() === true) {
return false;
}
if (this.isEmpty() === true) {
this.head = 0;
}
this.tail = (this.tail + 1) % this.cap;
this.q[this.tail] = value;
return true;
};

/**
* Delete an element from the circular queue. Return true if the operation is successful.
* @return {boolean}
*/
MyCircularQueue.prototype.deQueue = function () {
if (this.isEmpty() === true) {
return false;
}
if (this.head === this.tail) {
this.head = -1;
this.tail = -1;
return true;
}
this.head = (this.head + 1) % this.cap;
return true;
};

/**
* Get the front item from the queue.
* @return {number}
*/
MyCircularQueue.prototype.Front = function () {
if (this.isEmpty() === true) {
return -1;
}
return this.q[this.head];
};

/**
* Get the last item from the queue.
* @return {number}
*/
MyCircularQueue.prototype.Rear = function () {
if (this.isEmpty() === true) {
return -1;
}
return this.q[this.tail];
};

/**
* Checks whether the circular queue is empty or not.
* @return {boolean}
*/
MyCircularQueue.prototype.isEmpty = function () {
return this.head === -1;
};

/**
* Checks whether the circular queue is full or not.
* @return {boolean}
*/
MyCircularQueue.prototype.isFull = function () {
return (this.tail + 1) % this.cap === this.head;
};

/**
* Your MyCircularQueue object will be instantiated and called as such:
* var obj = new MyCircularQueue(k)
* var param_1 = obj.enQueue(value)
* var param_2 = obj.deQueue()
* var param_3 = obj.Front()
* var param_4 = obj.Rear()
* var param_5 = obj.isEmpty()
* var param_6 = obj.isFull()
*/

复杂度

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)